Extreme-Value Graphical Models With Multiple Covariates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical Models over Multiple Strings

We study graphical modeling in the case of stringvalued random variables. Whereas a weighted finite-state transducer can model the probabilistic relationship between two strings, we are interested in building up joint models of three or more strings. This is needed for inflectional paradigms in morphology, cognate modeling or language reconstruction, and multiple-string alignment. We propose a ...

متن کامل

Fast Information Value for Graphical Models

Calculations that quantify the dependencies between variables are vital to many operations with graphical models, e.g., active learning and sensitivity analysis. Previously, pairwise information gain calculation has involved a cost quadratic in network size. In this work, we show how to perform a similar computation with cost linear in network size. The loss function that allows this is of a fo...

متن کامل

Optimal Value of Information in Graphical Models

Many real-world decision making tasks require us to choose among several expensive observations. In a sensor network, for example, it is important to select the subset of sensors that is expected to provide the strongest reduction in uncertainty. In medical decision making tasks, one needs to select which tests to administer before deciding on the most effective treatment. It has been general p...

متن کامل

Sparse Ising Models with Covariates

There has been a lot of work fitting Ising models to multivariate binary data in order to understand the conditional dependency relationships between the variables. However, additional covariates are frequently recorded together with the binary data, and may influence the dependence relationships. Motivated by such a dataset on genomic instability collected from tumor samples of several types, ...

متن کامل

Estimating bank default with generalised extreme value regression models

This paper proposes a novel model for the prediction of bank failures, on the basis of both macroeconomic and bank-specific microeconomic factors. As bank failures are rare, in the paper we apply a regression method based on extreme value theory, which turns out to be more effective than classical logistic regression models, as it better leverages the information in the tail of the default dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2014

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2014.2358955